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A different class of two-dimensional shocks in magnetized plasmas, with a characteristic velocity that
is larger than the hydrodynamic velocity, is described. At the one-dimensional limit shocks in cold mag-
netized plasmas are recovered. At the opposite limit the recently discovered [Phys. Rev. Lett. 69, 2070
(1992)] fast two-dimensional shocks are recovered. The fast penetration of the magnetic field is induced
by a density gradient along the current lines that is formed by the magnetic field pressure in the two-
dimensional flow. If the collisionality is low, the electron heating might be small. The dissipated mag-
netic field energy is then converted to electron Kinetic energy not in the form of thermal energy but rath-

er as a directed energy that is convected away.

PACS number(s): 52.35.Mw, 52.35.Tc, 52.75.Kq

1. INTRODUCTION

In one-dimensional (1D) shocks in plasmas, as a result
of the frozen-in law, a small magnetic field in the shock
upstream (the unperturbed plasma) and a large magnetic
field in the shock downstream are accompanied by a large
plasma compression [1]. An unmagnetized upstream
plasma and a magnetized downstream plasma imply an
infinite plasma compression. The velocity of the 1D
shocks is on the order of the hydrodynamic velocity.

It has been recently shown that high velocity shocks, in
which the upstream magnetic field is small (and even
zero) and the downstream magnetic field is large while
the plasma compression is small, may propagate in plas-
mas that are nonuniform [2-9]. The nonuniformity may
be a density gradient or magnetic field curvature. Both
gradient and curvature lie in a direction perpendicular to
the direction of shock propagation, reflecting the two-
dimensional (2D) nature of the propagation. The velocity
of those shocks was shown to be inversely proportional to
the characteristic length of nonuniformity and to be sub-
stantially larger than the velocity of the 1D shocks, when
this length is much smaller than the ion skin depth.

The high velocity shocks described above propagate
only in plasmas that are nonuniform from the start. In a
recent paper [10] we have shown that 2D shocks of a
large magnetic field downstream may propagate into an
unmagnetized plasma even if the plasma is initially
homogeneous. The velocity of such 2D shocks was also
shown to be substantially larger than the velocity of the
1D shocks. The plasma compression in the 2D shocks is
small. The fast penetration of the magnetic field is in-
duced by a density gradient along the current lines that is
formed by the magnetic field pressure in the 2D flow. In
this paper we present a unified analysis of the 1D and 2D
shocks that propagate in plasmas that are initially homo-
geneous. The shocks we analyze are reduced at one limit
to the 1D shocks, and at the other limit to the recently
discovered [10] fast 2D shocks.

For simplicity we restrict ourselves to cases in which
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the plasma pressure is much smaller than the magnetic
field pressure. In the case of 1D shocks this may be
mainly when the shocks are weak (when the relative
change of the magnetic field across the shock is small) if
the upstream plasma is cold. We show, however, that in
the case of 2D shocks the plasma pressure may remain
small even if the shock is strong (the ratio of the down-
stream magnetic field to the upstream magnetic field is
large). Therefore, the simplifying assumption of a small
plasma pressure actually holds in this important case, as
will be shown a posteriori.

We are interested especially in the low-collisionality
case. As expected, when the collisionality is small, the
shock structure is determined mainly by the electron in-
ertia. The shock transition includes damping nonlinear
waves. At the 1D limit of the general 2D shocks, the
weak shocks in magnetized plasmas studied by Sagdeev
[11] are recovered. In addition to their higher velocity,
some of the 2D shocks are characterized by a low rate of
electron heating. If the collisionality is small, the dissi-
pated magnetic field energy is converted to electron
kinetic energy not as a thermal energy, but rather as a
directed kinetic energy that is convected away.

The propagation of high velocity shocks in plasmas
that are nonuniform from the start has been suggested as
the mechanism of magnetic field penetration into the
plasma in the plasma opening switch (POS) [12,13]. It
has been shown that such shocks have to be accompanied
by a large electron heating [8]. Experiments indicate that
such a large heating does not occur [14]. The fast
penetration of the magnetic field observed in the POS,
that is not accompanied by a large electron heating,
could therefore be similar to the magnetic field penetra-
tion in the form of 2D shocks described here.

In Sec. IT we present the model equations. In Sec. III
we discuss in general terms the evolution of the energy in
the system. In Sec. IV we find the shock velocity and the
shock structure. The fraction of energy that becomes
electron thermal energy is calculated in Sec. V. Cases are
presented where this fraction is very small. Numerical
examples and conclusions are given in Sec. VI.
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II. THE MODEL

We examine the evolution in a plasma of a magnetic
field, the only nonzero component of which lies in the
direction of the ignorable coordinate y. Therefore, the
magnetic field is of the form b=’éyb(x,z,7'). The govern-
ing equations are Faraday’s law

b OE, OE, |
r  ox oz ’ W
Ampere’s law
_db
= (2a)
n(Vz—vz)ZQ ) (2b)
dx
the ion continuity equation
dn | 9
—+—V,)=0,
or  9dz (n¥2) )
the momentum equation
dv, ab
"ar  ba W
and the electron momentum equation
dv,
€ =—E . +v,b—v(v,—V,), (5a)
dr
0=—E,—v,b . (5b)

The equations are in a dimensionless form, where b is the
magnetic field normalized to B, n is the density normal-
ized to the upstream density n, 7 is the time normalized
to the ion cyclotron period w_; (= Mc /eB,, where M and
e are the ion mass and charge and c the velocity of light
in vacuum), the coordinates x and z are normalized to the
ion skin depth ¢ /w,[ =(Mc?*/4mnqe?)"?], v and V are
the electron and ion velocities normalized to
Vi(=co,/wy), E is the electric field normalized to
B,V , /c, € is the electron mass m normalized to the ion
mass, and v is the collision frequency normalized to
eBy/mc. In writing the equations we assumed that the
derivatives with respect to z are larger than the deriva-
tives with respect to x, so that L, /L., v, /v,, and V, /V,
are all small. By L, and L, we denote the characteristic
lengths in the two directions. In Eq. 4), d /dT=3/9r
+V,(0/9z), while in Eq. (5) (d/d7)=(3/97)+v-V.
Quasineutrality is assumed and the displacement current
is neglected.
The various velocities therefore satisfy the relations

V,<<V,<1Zu<v, . (6)

Here u is the velocity of penetration of the magnetic field.
The electron velocity v, is much smaller than v, .

We assume that the plasma pressure is negligible. This
assumption restricts the domain of validity of our equa-
tions. The assumption is correct in the case of weak 1D
shocks treated by Sagdeev [11]. It will also be shown to
be valid in important 2D shocks with low heating.
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III. THE PARTITIONING OF POWER

In this section we examine the partitioning of power in
the plasma. We use the equations of Sec. II to derive
equations for the evolution of the magnetic field energy,
the electron kinetic energy, and the ion kinetic energy.

Multiplying Eq. (1) by b and using Egs. (2a), (5b), and
(6), we obtain an equation for the evolution of the mag-
netic field energy:

b2 |

2

2 s
3, +V-EXb=V,b 32 +E-nv . (7

The first term on the left-hand side (LHS) represents the
change in time of the magnetic field energy density, and
the second term represents the divergence of the Poynt-
ing flux. The first term on the right-hand side (RHS)
represents the work done by the fields on the ions, while
the second term represents the work done on the elec-
trons.

We now restrict ourselves to solutions of the equations
in the form of a traveling wave. We therefore assume
that

d 9

ar 4%
The waves propagate in the z direction with a velocity
u(x ) that depends on x. From Egs. (3) and (4), it follows
that

(8)

2u?
= , 9)
T 2= (57— b2)]
and that
(b2—b2)
szT . (10)

Here b, is the upstream magnetic field at the limit
z—u(x)r— oo. In this general analysis we allow an arbi-
trary plasma compression and do not restrict ourselves to
n =1, as we previously did [10].

Using Egs. (8), (9), and (10), we integrate Eq. (7) with
respect to z, and obtain

b2__b2
2

u

d e,
—Exb——a—x—fz dz'E,b

:’SL(bZ——b,f)A—fwdz'E-nv. an
u z

The first term on the LHS represents the change in time
of the magnetic field energy, the second term is the axial
flux of the magnetic field energy, and the third term is the
integral with respect to z of the radial flux of the magnet-
ic field energy. The first term on the RHS is the rate of
work done on the ions, and the second term is the rate of
work done on the electrons.

Let us examine the term associated with the radial flux
of the magnetic field energy, the third term on the LHS
of Eq. (11). Using Egs. (2a), (5b), and (9), we perform the
integration with respect to z:
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8 [=dz’ 3b,,

oxY: n oz
_p | P=b)) b2 (b3—b2) 12
S A 3 2u> 1022

This term vanishes if the flow is 1D, i.e., if there is no
dependence on x. If the flow is 2D, i.e., if the dependence
on x is not zero, this term contributes substantially. The
fast evolution of the magnetic field is due to this very
dependence of the radial flux of the magnetic field energy
on x.

We now assume a shock propagation in which for
z—u(x)r— — o, at the shock downstream, b— —1,
v, —0, and v, —V,. Using Egs. (5a) and (10) for express-
ing E, and Eq. (12), we write Eq. (11) as

P,+P, =Upz+U;+U,, (13)
where
(1—b2)
P,= - (14a)
2u

is the net axial flux of magnetic field energy,

d

(1+b7)  (1+b])
Px=—_ —_

6 10

(14b)

1
I

is the radial flux of magnetic field energy integrated with
respect to z,

Ug=u L=by (14¢)
2
is the rate of increase of magnetic field energy,
,=$(1—b3)“ (14d)
is the rate of work done on the ions, and
U,= f_wwdz E-nv (14e)

is the rate of work done on the electrons. Note that once
u=u(x) is specified, the partitioning of the power (be-
tween the increase of the magnetic field energy, the work
on the ions, and the work on the electrons) is determined.

We now follow the partitioning of the magnetic field
energy dissipated as a work on the electrons. Using Egs.
(2), (3), and (5), we derive an equation for the evolution of
the electron kinetic energy:

9
ar

6nv2 €nvzv
2

4V
v 2

=—E-nv—vnv«(v—V) .

(15)

We assume that the relation described by Eq. (8) holds,
integrate Eq. (15) with respect to z across the shock, and
obtain

U,=A4+uQ, (16)

where

2999
» 3] e o]
A——_:f_wdza 57 |z (17a)
and
- 3 |’
st_wdzu—vn = (17b)

is the rate of Joule heating. As we mentioned above,
when b, and u are specified, U, is determined. However,
the partitioning of U, between energy that is convected
away (the first term in the integrand) and energy convert-
ed to thermal energy through Joule heating (the second
term in the integrand) is not yet determined.

In order to pursue the analysis of the energy flow we
need to find an expression for d /dx(1/u?) in Eq. (14b).
To do that, we regress temporarily to the equations of
Sec. II. Combining Eqgs. (1)-(6) and (8)-(10), we obtain

€ 0 |10db € 1 db v 0b _
noz|n dz u[b’naz] unaz+F(b) 0,
(18)
where
_laflafZ 1 9f, 9f4
{fl’fz}_n 9z 8x n 9z Ox (19)
are Poisson’s brackets, and
Fib)= —(b—b )4 (bz—b,f)b d [ 1 |®2=b27
(b)=—( u) 20’ ax | 02 ™
(20)

The second term in Eq. (18) results from the convective
derivative in the electron momentum equation, and it has
this form because of the derivation with respect to x.
The dependence on x is also important in the expression
for F through the presence of the third term on the RHS
of Eq. (20). Since b is uniform in the shock downstream,
it follows from Eq. (18) that

F(b=—1)=0, (21)
or, explicitly,

(—14+b,)%(1+b,) 4
8u dx

2u?

1 (1-b,)
S5 =l (22)
u

Equation (22) provides us with the expression we need
for d /dx (1/u?), and we may continue the analysis of the
energy flow. Substituting the expression for d /dx (1/u?)
from Eq. (22) into Eq. (14b), we find that the radial flux of
magnetic field energy, integrated with respect to z, is

b2(1+b2) (1+b])
6 10

x— S
(1—b,)%(1+b,)

X

(-b)
2u?

(23)
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A. The 1D limit

We assume that there is no dependence on x. These
are the usual 1D shocks with the assumption of a zero
plasma pressure. These shocks, in the case of low col-
lisionality, have been studied in detail by Sagdeev [11].
Using Eq. (22), we find that the shock velocity is

172

1—b,
u=u, = 5 (24)
Since there is no dependence on x, the fluxes are
P =0 (25a)
and
P,=(1+b,)u, . (25b)

We examine the two cases, a weak shock in which the
upstream magnetic field and downstream magnetic field
are similar, and a strong shock, in which the upstream
magnetic field is zero. We start with the weak shock:

1+b, <<1. (26)
The flux of magnetic field energy is divided as follows:
Up
=]
(P.+P,) (27a)
and
U,U,<<Ug . (27b)

The magnetic field energy goes mainly to build the mag-
netic field energy in the shock downstream, and only a
small part is dissipated as work on the ions or on the elec-
trons. If the plasma upstream is unmagnetized,

b,=0, (28)
the power is divided as follows:
Up 1
———(Px P =5 (29a)
U _1 29b
(P, +P,) 4~ (290)
and
I (29¢)
(P, +P,) 4 ¢

This known power partitioning [9] is characterized by a
large magnetic field energy dissipation by both electrons
and ions.

B. The 2D limit

After examining the 1D limit, at which the shocks are
reduced to the known 1D shocks [11], we turn to the 2D
limit, and recover the recently discovered [10] 2D shocks.
At the limit opposite to the 1D limit,

u>>u . (30)
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At this limit, 2D effects play the major role. Then

b2(1+b)) (1+b)) 8u
x =T 6 10 | (1—b)X1+b,)
(31a)
and
P, <P, . (31b)

The main flux of magnetic field energy is radial, perpen-
dicular to z, the direction of shock propagation. This
feature is common to the wave penetration due to the
Hall field [8]. We again examine the two cases, a weak
shock and a strong shock. If the shock is weak and Eq.
(24) holds,

1+b, <1,

the radial flux of magnetic field energy, expressed in Eq.
(31a), becomes

P.=u(l+b,), (32)

while P, satisfies Eq. (31b). The flux of magnetic field en-
ergy is larger than it is at the 1D limit. The partitioning
of the power is also described here by Eq. (27). The dissi-
pated magnetic field energy is small. If the upstream
plasma is unmagnetized,

b,=0,

the radial flux of the magnetic field energy, expressed in
Eq. (31a), becomes

P, =%u . (33)
The partitioning of the power is then
Ug
2 =5 34
(P.+P) * (34a)
and
Ve _, (34b)
(P,+P,) *’
while
U, «<U,,Ug . (34c)

The work done on the ions is small. The flux of magnetic
field energy is distributed between the magnetic field en-
ergy built in the shock downstream and the energy dissi-
pated as work done on the electrons.

IV. THE VELOCITY
AND THE STRUCTURE OF THE SHOCK

An implicit expression for the shock velocity is ob-
tained by integration of Eq. (22):

(v —uNug+ug) ug

u  ug

Xug
200—u?) ’
(35)

1
+1n

(u+tu uyg—u)
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where u,, is the shock velocity at x =0. The shock veloci-
ty has to satisfy the relation

u>u(1+b,)%, (36)

otherwise the expression for the density, Eq. (9), becomes
negative. When 2D effects are small,

uy=u,(1+8), 8«1, (37)

l . (38)

When the 2D effects are pronounced,

the shock velocity is

xXug

(1—u?)

u=u,{1+dexp

ug>ug , (39

the shock velocity is
|

3001

3
3 Xu g

42 20
2 (1—ul)u?

(40)

u3=u3/

These are the recently discovered high velocity shocks
[10].

For the analysis of the 2D flow we specify, in addition
to the upstream parameters (b, or u,) and the single
downstream parameter (b= —1), the velocity of the
shock u, at x =0. The shock velocity u(x) and the parti-
tioning of the power are then determined, with the excep-
tion of the partitioning of the electron kinetic energy be-
tween thermal energy and directed energy.

We turn to the shock structure. As is often so
[6,10,11,15,16], when the collisionality is small, the elec-
tron inertia determines the shock structure. Seeking an
evolution in which the magnetic field depends on

E=[z—u(x)r]f(x), 41)
we write Eq. (18) as

2

_é;Lz_ d 1 db € 212 2 d 1 d 2 1 db Vf db _

L2+ = )= | = |- = | = | -2 =0.
n dE |n de > nf“(b b")dx ) dx(f) n? | de un d§+F(b) (42)
[

Furthermore, by defining the Lagrangian coordinate where

dé(x)=dEn(E,x)/(Vef(x), 43) F=exp |— [ “ldb'g(b") ]F ) (49)

b

and the norm:jhzed resistivity Equation (47) describes in a standard manner the motion

n=v/(Veu), (44)  with a friction of a particle in a potential well, where the

where the coordinate § is measured in units of the local
electron skin depth, we transform Eq. (42) to
2

d?b db db
—+gb) || —9—=+F(b)=0. 45
a2 TEW g | Tmag tF®) (45)
Here
_ .d |1 (b>—b7) 1 d
)= =2 | | ey 3w )
(46)

In addition to b, and u, we still have the freedom to
choose d /dx(Inf). All these parameters determine the
shock structure and the partitioning of the electron ener-
gy-
Similarly to the analysis of Sagdeev [11], it is possible
to introduce an effective potential that determines the
particle “coordinate” as a function of “time.” This can
be done by defining

g(b)=exp [—fb_ldb g(b)]
x [ b exp| [, a5 . 47
Equation (44) is transformed to

d2
4y 15—, 48)

potential is
p=['dg'F . (50)

From the analog to the particle in the potential well, it
follows that

2

49
ag
For investigating the partitioning of power we find Egs.

(47)-(51) less useful. We pursue the analysis of Eqgs. (45)
and (46).

P[q(b=—1)]=f_:d§n (51)

V. THE ELECTRON ENERGY

We would like to calculate Q, the rate of Joule heating.
Using Egs.. (18b), (41), and (43), we write
2
db
dg
We examine the penetration into an unmagnetized plas-

ma b, =0, at which the work on the electrons is large.
Also, we assume that 2D effects are important:

u>>1. (53)

. (52)

o=[" d¢n

Following these assumptions, we approximate g(b) as

=_1d
gb)=g= o dx(lnf), (54)
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which is independent of b. Let us assume that
lgl>>1. (55)

In Eq. (45) there are now two parameters: g and 7. we
neglect the first term on the RHS of that equation and
obtain

2
db db _
s o +F(b)=0, (56)
where
s=¢/m, p=g/n". (57

The equation in this form is characterized by the parame-
ter p only. In the regime in which —1=5b =0, the value
of F is positive. If g is negative, p is negative as well. We
solve Eq. (56) and find that

172
ab _ 17\ mapr)
LRRRIES Ll 5o

Since we have an expression for the derivative of b as a
function of s, we change the variable of integration in Eq.
(52) from & to b and express the rate of heating as

_ [0 gy db
Q—f_ldbndg . (59)
Using Egs. (57) and (58), we obtain that
_[o 1—(1—4pF)!”2
0=[_db » (60)

A. Large electron heating

We now examine the asymptotic limits. We first look
at the case

lpl<<1. (61)
We then approximate

db

=~ =~F

ds ) (62)

and, therefore, the heating is
o=["abFb), (63)
-1

Using the inequality (53), we approximate the potential as
F(b)=—b—b"*, (64)

where b, =0 and we neglect the second term in Eq. (20).
We obtain

Q=0.3 (65)

in agreement with Egs. (33) and (34b). Inequality (61),
therefore, defines the collisional regime, in which the
Joule heating is large and

U=uQ>A4 . (66)
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B. Small electron heating

We turn to the collisionless case

pl>1. (67)
Here we approximate
172
i;% = lpE (68)
The heating is
) 172 ) 172
0
= [—— db F'/?=0.524 | —— . (69)
0 S, .

The integral in Eq. (69) was calculated numerically.

C. The limit of zero resistivity

The approximation (56) fails when the velocity db /d§
becomes small, in which case the second term in Eq. (45)
becomes smaller than the first term:

2
d*

ag?

db
g ac << ,|F(b)| . (70)

Let us estimate the contribution to the dissipation of
these small oscillations. When both inequality (70) holds
and the resistivity is small,

1

2

db

2
bA
ac =[ b Fb), (71)

where b 4, is the value of the magnetic field at which the
derivative of b vanishes. To be consistent with the as-
sumption (70), we require that

bA
28 [ TdbF(b)<<F(b,) . (72)
We linearize F(b) near b= —1, as
F(b)=3(1+b), (73)
and, as a result, inequality (72) becomes
ll+bAl<<L. (74)
lgl
Thus, when Egs. (70)—-(74) hold, the heating is
bA
Q= [ “abF(b), (75)
-1
which, for b , = —1, and with Eq. (74), is
0=1.5(1+b,P=12 . (76)
g

When Q calculated by Eq. (76) is larger than Q calculated
by Eq. (69), the heating is expressed by Eq. (76). This
happens when the resistivity is so small that

2.86
PR

<< (77
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D. The heating in the three regimes

As we described in Sec. V A, when the resistivity is so
large that Eq. (61) is valid, or, specifically, if Eq. (57) is
used, when

n>>g|'?,
the heating is given by Eq. (65):

0=0.3.

(78)

From Egs. (57), (67), (69), and (77), we conclude that for a
small resistivity
2.86

|g|3/2

the heating is

= _n_
0=0.524 ol

At the limit of zero resistivity, when Eq. (77) is valid,
2.86

g3/

the heating is described by Eq. (76):

1.5
o= rFol
Equation (76) expresses the heating at the collisionless
limit, i.e., Q(g,7—0).
Let us apply this analysis to the self-similar evolution
demonstrated in Ref. [10]. In the self-similar magnetic
field evolution [10],

«<n<<|g|'”? (79)

(80)

<<

u=x"13 f=x/3, 81)
and

g=x"23>1. (82)
Equation (78) becomes

Yo ox3, (83)

Oy

where v, and wy are the dimensional electron collision
frequency and electron-ion hybrid cyclotron frequency.
Equations (79) and (80), respectively, become

v
2.86x2 3 << — «<x 723

(84)
2574

and

Ve
0=0.524—% . (85)
Here w; is the ion cyclotron frequency. Equations (77)

and (76), respectively, are

%
2.86x23>> ¢ (86)
(05
and
1.5
0=—175 . (87)
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V1. NUMERICAL EXAMPLES AND CONCLUSIONS

In this section we give numerical examples of the
shock structure and the distribution of the electron ener-
gy between heating and convection. In the examples the
shock velocity is high, corresponding to 2D shocks. The
governing equation is Eq. (45), where g(b) is approximat-
ed as a constant, according to Eq. (54), and where F(b)
is approximated by Eq. (64). Therefore, the flux of mag-
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FIG. 1. The shock structure and the electron heating for (a)
g=0, (b) g=5, and (c) g=100. Curve 1 shows b, curve 2 shows
q [defined in Eq. (88)], and curve 3 shows C [defined in Eq.
(89)]. The calculation was done by solving Eq. (45) with the ap-
proximations in Egs. (54) and (64). Here n=0.1.
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netic field energy is distributed between the magnetic field
energy in the shock downstream [Eq. (34a)] and work on
the electrons [Eq. (34b)], while the work on the ions is
small [Eq. (34c)]. In the examples we examine the
influence of the parameters g and 7.

Figures 1(a)-1(c) show the magnetic field b, the Joule
heating, and the quantity C as a function §{. The heating
is given by the integral

w® db
(&)= d¢ (88)
a)=[ den |z
The quantity Cis
3
o ab
c)= di' |~ (89)
o= ["gat o

At the limit {— oo the quantity C equals A4 /u, where A4
is defined in Eq. (17a). In Figs. 1(a)-1(c) the resistivity
was taken to be 7=0.1. In Fig. 1(a), g =0, in 1(b) g =5,
and in 1(c) g=100. In all three figures the shock struc-
ture includes damped spatial oscillations. The amplitude
of the oscillations is smaller for a larger g, and in Fig.
1(c), where g is 100, the amplitude of the oscillations is
very small. In Fig. 1(a) all the work done on the electrons
goes to electron heating. No energy is convected away.
In Fig. 1(b) most of the energy is convected away and
only a small fraction heats the electrons. In Fig. 1(c) the
electron heating is too small to be noticed.

The analysis of the electron heating presented in Sec. V
is demonstrated in Figs. 2—-4. The heating Q expressed in
Eq. (52) was calculated through a numerical solution of
Eq. (45) with the approximation (64) for F(b). Figure 2
shows Q as a function of g and 7. It is seen in the figure
that for g =0 the heating is 0.3, irrespective of the value
of 1. For g0 the heating for 7=0 is smaller than 0.3,
but becomes 0.3 for large 7. The value of Q decreases
with increasing g.

The detailed dependence of the heating Q on the resis-
tivity 7 is shown in Fig. 3. Plotted is In(Q) as a function
of In(n) for g=25. The straight line shows
In[0.5247/(—g)!/?] as a function of In(7). It is seen in
the figure that for large and small values of 7 the heating

FIG. 2. The rate of heating Q [Eq. (52)] as a function of g and
7. The calculation was done by solving Eq. (45) with the ap-
proximations in Egs. (54) and (64).
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FIG. 3. The rate of heating Q [Eq. (52)] as a function of the
normalized resistivity 17 on a natural logarithmic scale (curve 1).
The calculation was done by solving Eq. (45) with the approxi-
mations in Egs. (54) and (64). Curve 2 shows the approximate
rate of heating as given by Eq. (80). Here g =25.

is constant. In fact it is easy to verify that it is approxi-
mately described by Egs. (65) when 7 is large, and by Eq.
(76) when 7 is small. In the intermediate regime the two
lines coincide and Eq. (69) holds.

Figure 4 shows the heating as a function of g at the
limit of zero resistivity. For each value of g the value of
Q was calculated for smaller and smaller values of 7, un-
til convergence was reached. Plotted is the product of Q
by g2, which approaches a constant for a large g. This
constant is approximately 1.2, somewhat smaller than
1.5, the number we estimated in Eq. (76).

In conclusion, we have described a different class of 2D
shocks in plasmas. At the 1D limit shocks in cold plas-
mas are recovered. Generally, the 2D shocks have a ve-
locity that is higher than the velocity of the 1D shocks.
At the limit opposite the 1D limit, the shock velocity is
high and the flux of magnetic field energy is distributed
between building the magnetic field in the shock down-
stream and work on the electrons. Only a small part is
converted into work on the ions.

A subclass of the class of fast shocks includes shocks in
which the electron heating is small. We have presented
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FIG. 4. The product Qg? as a function of g at the limit —O0.

The calculation of Q was done by solving Eq. (45) with the ap-
proximations in Egs. (54) and (64).
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here a detailed analysis of the distribution of energy sup-
plied to the electrons, and have demonstrated the possi-
bility of shocks in which the dissipated energy is convect-
ed and does not heat the electrons in the shock down-
stream.
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